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The mechanism of peristaltic transport of an incompressible viscoelastic fluid by 
means of an infinite train of sinusoidal waves travelling along the wall of the duct 
is studied in the case of a plane flow. The main assumptions are that the relevant 
Reynolds number is small enough to neglect inertia forces, and that the ratio of the 
wavelength and the channel height is large, which implies that the pressure is 
constant over the cross-section. For sufficiently small values of the ratio of the wave 
amplitude and the mean height of the channel, details of the fluid motion are studied 
analytically within a second-order approximation with respect to  the amplitude ratio. 
Under these conditions the integral constitutive equation of finite linear viscoelasticity 
is relevant. Particular attention is given to the pressurdischarge characteristics of 
the peristaltic pump and to the pumping efficiency. The results are influenced by 
specific values of the complex viscosity of the fluid, which can be determined using 
standard rheometers. I n  general, the rate of discharge turns out to be a non-monotonic 
function of the wave speed. This leads to  an optimal wave speed, for which the 
memory of the fluid particles extends over several wave periods. From an energetic 
point of view, relatively small wave speeds are the best, where the fluid changes its 
state slowly such that the memory and with i t  the elasticity of the fluid do not 
influence the flow field a t  all. As the dimensionless memory parameter tends to zero, 
the analytical results reduce to the well-known case of a Newtonian fluid. 

1. Introduction 
Our purpose is to investigate the mechanism by which a fluid is transported 

through a duct when contraction waves propagate progressively along its wall. This 
valveless-pumping principle, which is called peristalsis, plays a role in many 
physiological processes with fluid transport and is also exploited in technology, e.g. 
in so-called ‘roller pumps’. I n  the last 15 years many investigations on peristaltic 
flow of Newtonian fluids have been carried out. Rath (1980) has given a survey of 
this subject, with a probably complete summary of the bibliography until 1978. 

Studying peristaltic flows, especially with a view to applications in biomechanics 
and physiology, one should consider real material properties of the fluid being 
transported and determine the essential departures from the results of the theories 
for Newtonian fluids. These investigations are, also, interesting for technological 
applications, e.g. in the field of polymer processing. In this regard there are only few 
contributions in the literature. The earliest ones date back to Raju & Devanathan 
(1972, 1974). They considered the motion of an inelastic power-law fluid and of a 
special viscoelastic fluid of differential type of grade two through a tube with 
sinusoidal corrugation of small amplitude propagating in the axial direction. Within 
their approach (linear theory with respect to the wave amplitude) the rate of‘ 
discharge is independent of the elasticity of the fluid. Therefore the papers give no 
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information about the question how the pressure-discharge characteristic of a 
peristaltic pump varies if a viscoelastic fluid is transported instead of a Newtonian 
one. 

Recently Becker (1980) has studied a simple model for peristaltic pumping of a 
non-Newtonian fluid. Because of the special geometry of the pump only the 
viscometric viscosity function enters the theory; the contraction may be of any height 
desired. The numerical results refer to the model of a Prandtl-Eyring fluid. 

In  this connection also the paper of Shukla et al. (1980) is worth mentioning. It 
is related to those situations in the organism for which the viscosity of the fluid varies 
from the wall to the centre of the duct. In  the special case of a constant viscosity, 
the analytical results reduce to those of Shapiro, Jaffrin & Weinberg (1969). 

In  the following we investigate a plane peristaltic flow, which is idealized in several 
respects. The fluid is assumed to be within a channel of average height a, where one 
wall is at rest. An infinitely long sinusoidal wavetrain with amplitude ea (161 < l ) ,  
wavelength I and wave velocity c travels over the wall (cf. figure l a ) .  We assume 
that the particles in the wavy wall move strictly up and down. Our aim is to find 
out which rate of flow &[m2/s] per channel width will be produced by the motion 
of the wall in the time average. Besides a, e ,  1 and c the additional factors affecting 
@ are the average pressure rise Apl registered in advancing one wavelength in the 
direction of the flow (in negative x-direction), the density p and the viscous and elastic 
properties of the fluid, especially the zero-shear-rate viscosity T~ and a characteristic 
memory time A. 

From the nine quantities a,  e ,  I ,  c ,  Q, Apl, p,  v0,  h six independent dimensionless 
quantities can be formed. We select the following: 

flow-rate parameter 

pressure parameter 

Reynolds number 

together with the length ratio a l l ,  which is sometimes called the ‘wave order’, the 
dimensionless relative wave amplitude e and the memory parameter hw, where 

(4) 
c 

0 E 2n- 
1 

is the characteristic angular frequency for the flow field. The relation then reads 

(5 )  

Here we can already recognize that the rate of flow will be an even function with 
regard to e ,  using the following symmetry argument. In  the relative frame fixed with 
the wave, the channel height is described by the time-independent function 

a 
1 

@ = @ ( K , R , - , e 2 , 0 h ) .  

A change of sign of e would cause a displacement of the wavetrain by i l ,  Thereby 
the rate of flow would naturally be unaffected. So we infer that with low amplitude 
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FIGURE 1. Plane peristaltic flow: (a) laboratory frame; (b) wave frame. 
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of the corrugation (for I E ~  4 1) at least an approximation of order e2 is necessary to 
cover the influence of the peristaltic motion on the flow rate. 

In  order to obtain analytical results it is essential to make some simplifying 
assumptions. In  particular, we assume the wavelength to be sufficiently long 
compared with the channel height (a l l  4 1). This will permit us to neglect quadratic 
terms of the ‘slenderness’ parameter all  compared with those of order 1 in the 
analysis. Furthermore, we assume that the fluid is so viscous that inertia forces can 
be neglected compared with extra stresses (‘creeping flow’). With regard to the 
dimensionless quantities this means that the Reynolds number reduced with the 
slenderness parameter, i.e. Rall (not R itself), has to be small compared with 1 (see 
Shapiro et al. 1969). As we neglect inertia forces completely, we consider the 
asymptotic case Ra/l+ 0. Both simplifications lead to the fact that the parameters 
R and all  drop out in ( 5 ) :  

According to Shapiro et al. (1969), in the case of a Newtonian fluid (with wh = 0) ,  
the relation (7),  which gives the pressurdischarge characteristic of the system, can 
be described by elementary functions in the limit of the approximations mentioned. 
The Newtonian results we need later on will be summarized in $3. If we consider 
arbitrary viscoelastic liquids, it will be necessary to assume furthermore that the 
relative wave amplitude c is small, and we restrict ourselves to determining the 
right-hand side of (7) within a linear approximation in e2. 

0 = 0 ( K ,  €2, wh).  (7) 

2. Equations of motion and boundary conditions 
While the motion we investigate is unsteady viewed from the laboratory frame 

(with local coordinates X, Y )  it is steady in the wave-fixed relative frame. Therefore 
we largely base our calculation on the wave frame (with local coordinates x, y and 
velocity components u , v ;  cf. figure 1) .  

Let the rate offlow per channel width in the wave frame be q (the positive direction 
is to the right). Then the flow rate Q in the laboratory frame (the positive direction 
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is to the left) is related to q in the following way: q = ch(X+ct)-&(X+ct). For 
continuity reasons q is independent of x ;  whereas Q depends on X + c t .  In the time 
average, which will be indicated by a bar, we get from this (note that k= a) 

- 

Q = ca-q. (8) 

The plane flow of an arbitrary incompressible fluid that is steady in the wave frame 
is described by the continuity equation 

au a v  
ax ay 
-+- = 0 (9) 

and two equations of motion which connect the components of acceleration with the 
pressure p and the elements r,,, rxy, ryy of the extra stress tensor. If we neglect terms 
of order compared with those of order 1, the equation of motion in the y-direction 
leads to the simple relation (see Bohme 1981) 

- p + 7 y y  = -fj(Z). (10) 

Thus the slenderness condition implies that the normal stress in the direction 
perpendicular to the wall is constant over the cross-section of the channel and varies 
only along the direction parallel to the wall. This fulfils the balance of momentum 
in the y-direction, and it remains only to analyse the momentum balance in the 
x-direction. Neglecting inertia forces compared with friction forces, this presumes a 
sufficiently small reduced Reynolds number Ra/l+ 0. Under this assumption the 
relevant dynamic relation reads 

Concerning the boundary conditions of the flow field, from the no-slip condition a t  
the two walls we find 

u(x, 0) = c, v(x, 0) = 0, (12) 

(13) 
dh 2na 2nx 

w(x, h(x)) = c- = --cce sin -. 
dx 1 1 u(x,  h(x)) = c, 

Moreover we take into account that  the wall pressure rises in the negative x-direction 
over one wavelength by the given value Apl : 

In  the laboratory frame Apl / l  describes the mean pressure rise in that direction, where 
the wave moves and the fluid has to be transported. 

3. The flow field of a Newtonian fluid 
In  the case of a Newtonian fluid with viscosity yo, (11)  reduces to the relation 

Toa2u/ay2 = d#/dx. With the boundary conditions (12), (13) this gives the velocity 
field 

1 dfi 
u(x, y) = c+--[y2-h(x)y]. 

2710 dx 

By integration over the cross-section of the channel we obtain the flow rate q. Solving 
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this relation for d$/dx we get 
dr?; h - q / c  -= 12q0c- 
dz h3 . 

If we use this expression in (14) and replace the constant q by c a - Q  (equation (8)), 
we obtain a linear relation between pressure rise and rate of flow, which, in the case 
of the special function (6), takes the normalized form 

This formula corresponds to  equation (13) of Shapiro et al. (1969). (Because their 
symbol a denotes half of the channel height, the factor $ appears there instead of 6 
ahead of the bracket in our formula.) Equation (17)  can be written compactly in the 
form K/Ko = 1 -@/(Do, where CDo = 3c2/(2 + s2) describes the normalized rate of flow 
without counterpressure, and KO = 18e2/(1 -e2)% is the pressure parameter in the 
special situation where the flow rate vanishes. Henceforth we are only interested in 
real pumping situations, where the peristaltic flow is in the same direction as the 
pressure rise; this region is defined by the inequalities 0 6 CD < CD,, 0 < K < KO.  We 
recognize that for small amplitude of the corrugation (e2 -4 1)  the pressure parameter 
K has to be restricted to values of order c2, and the flow-rate parameter CD then also 
is of order e2. This fact will be used later on. 

First we consider the special case where the pressure difference over one wavelength 
disappears (no counterpressure, K = 0). In the Newtonian case under these conditions 
the pressure field $(x) is influenced by the viscosity of the fluid, while the velocity 
field is not. A thorough consideration leads to  the conclusion that, even in viscoelastic 
fluids, where the extra stresses are linearly connected with the velocity field, the 
velocity field of the creeping peristaltic flow is completely independent of the material 
properties in the special case K = 0. Thus it is identical with the previously considered 
Newtonian flow field. Because we intend to make use of this knowledge later on under 
the assumption of weak corrugation, we note here the Newtonian flow field in a 
first-order approximation with respect to E (for which we will use the term ‘el 
approximation’). By putting (6) and (16) into (15) and expanding on ascending 
powers of c, one finds for the flow without global pressure rise ( K  = 0 and therefore 
q/ac = 1+O(e2) according to (S), (17)) 

C 

The second velocity component v(x, y) follows from the continuity equation (9) 
together with the second boundary condition (12). 

4. Constitutive equation and perturbation method for viscoelastic Auids 
The aim of the following considerations is to determine the pressure-rate-of-flow 

characteristic (7 )  for peristaltic pumping (CD > 0) with counterpressure ( K  > 0) of an 
arbitrary simple fluid in the sense of Noll. Under the restrictive assumption of small 
amplitude of the corrugation (lei 4 1 )  this succeeds with analytical methods. Within 
the frame of the desired e2 approximation, the right-hand side of (7 )  can be replaced 
by linear expressions in c2 and K.  Since a constant term cannot occur for obvious 
reasons, the resulting expression consists of two terms only : 

(19) CD = (bo(wh) e2 + $hlK. 
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The coefficient $o should be a function of the memory parameter wh. I n  the case of 
a dependence on wh can be excluded, because in an uncorrugated pipe (e = 0) a 

constant pressure gradient leads to a steady viscometric flow, for which it is known 
that memory effects play no role. Thus, the coefficient $1 is the same as for a 
Newtonian fluid (without memory). The result (17) gives us the value = -&. 
From (19) we see that for an arbitrary viscoelastic fluid in a channel with small 
amplitude of the corrugation the pressure-discharge characteristics are parallel 
straight lines in the ( K ,  @)-diagram (cf. figure 4). The aim of the following is to  connect 
the coefficient $,(wh) with measurable material properties. Since @/(Do = 1 - K/Ko 
for sufficiently small values of e,  and, since = -&, we get KO = l2a0, a relation 
that is completely independent of the material properties of the fluid. Because the 
quantity m0 = r$,(wh) e2 only is unknown, i t  is sufficient for further considerations to 
study the special situation without global pressure rise. 

I n  order to find the adequate constitutive equation for simple fluids with memory, 
we have to  take into account that  in the case 0 < Is1 << 1 we have a motion with small 
deformation amplitude. Within a theory quadratic in E the most general constitutive 
equation for incompressible simple fluids is the so-called ‘ constitutive equation of 
second-order viscoelasticity ’. It reads (Truesdell & No11 1965) 

T = j o w ~ E ( s ) d s + ~ o m  low {a(s1,s2) E(sl) E(s2)+P(sl,s2)[tr E(sl)l E(s2))dslds2. 

Here T denotes the extra stress tensor and E(s) = C,(s) - I the history of the relative 
right Cauchy-Green tensor C, reduced by the unit tensor 1. C, is connected according 
to C,(s): = FT(s) F,(s) with the relative deformation gradient F,, which transforms 
a material line element dr a t  the actual time t into its position dr* a t  the former time 
t - s ,  i.e. dr* = F,(s) dr. G(s) is known as the linear viscoelastic influence function. The 
material properties a(sl, s2) and p(sl, s2)  will play no role in our case and therefore 
need not be considered in detail. The double integral on p(s1,s2) can be omitted 
completely, because according to Pipkin (1964) (see also Huilgol 1975) the linear 
invariant t r  E disappears like ez for every motion with IEl = O(e)  in an incompressible 
fluid. Thus the integral represents an additional term of third order, which can be 
neglected within the scope of an e2 approximation. Therefore we can formally put 
p = 0. The reason why the integral of a(sl, s2) also does not affect the motion can be 
explained only later on. 

In  order to calculate the flow field in an e2 approximation it is convenient to use 
series expansions in powers of e ,  for instance 

(20) 

U V 

C C 
- = 1 + eul + e2u2 + O(e3) ,  - = + A2 + O(e3) ,  

9 = e~l+e2~2+o(e3). (22 )  

Note that the coefficient functions ui and vi (i = 1 , 2 )  are dimensionless because of 
the normalization with the wave velocity C. Similarly, the coefficients of the 
expansions of the relative right Cauchy-Green tensor and of the extra stress tensor 
are called Ei and respectively. 
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5. The first-order flow field 
The terms that are linear in 6 are found within the theory of linear viscoelasticity, 

where the right-hand side of the constitutive equation (20) reduces to the first integral 

T = jOw E(s) ds. 

As has been shown in 53 the velocity field is independent of the material properties, 
and therefore corresponds to the Newtonian first-order flow field. The coefficient 
function ul(x, y) can thus be read from (18); w,(x, y) then follows from the equation 
of continuity (9) : 

27lx 277 2nx 
u1 = f'(y)cos--, w1 = T f ( y ) s i n I  1 

According to (18), f'(y) = 6(y2/a2- y/a); the prime denotes differentiation with 
respect to y. The original function that is compatible with the boundary condition 
. f (O)  = 0 (cf. (12)) reads 

f(y)  = a(2$-3$) .  

Since the motion is known in the 
be calculated. We find 

approximation, the deformation history E,(s) can 

(26 ) 

where A and B are respectively the imaginary and real parts of the complex matrix 

El(s) = -sinwsA+(l-cosws) B, 

, exp (i?). (27) 

By substituting the expression (26) into the constitutive equation (23), we obtain the 
integrals 

which are respectively the real and imaginary parts of the so-called complex viscosity 
q * ( w )  = q'(w)-iq''(w) of the fluid. In  this way we find for the first-order extra 
stresses 

Tl = w ~ ' ( w )  A - w ~ " ( w )  B. (29) 

If we introduce the expressions for the shear stress and the normal-stress difference 
into the equation of motion (11) and make use of the slenderness condition again, 
we get for the first-order pressure field 

2nx 

According to (25) the factor d3fldy3 is constant and equal to 12/a2. Thus not only 
the velocity field but also the stress field is completely determined to first-order 
approximation. 
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6. The induced second-order stresses 
One can show that the product E,(s,)E,(s,) is proportional to the unit tensor. This 

is why we can add, within a second-order theory, the contributions resulting from 
the double integral on E(s,)E(s,) in (20) to the pressure field. Therefore i t  is also 
possible to take the material function a(s,, s,) as zero. Thus we find the unexpected 
result that even within a second-order approximation the constitutive equation (23) 
of finite linear viscoelastici ty  is appropriate. 

The next step consists of determining the second-order stresses, which are induced 
by the first-order motion. These stress contributions will produce an additional 
motion (the terms u2,v2 in (21)), which will influence the stress field again. Thus, it 
is convenient to split up the total second-order stresses, T, and jj2, into a sum of two 
terms in each case: 

(31) 

The indices ( 1 , l )  and (2) indicate that the corresponding quantities are connected 
with the square of the first-order flow field, or linearly with the second-order flow field. 
In  order to get the fields T(ly1) and p(l>l), the contribution E(lsl) to the deformation 
history has to be determined. The required calculations are rather extensive, and are 
omitted here. Introducing the result into (23 )  we meet once more the integrals in the 
form (28). However, apart from the quantities ~ ’ ( w ) ,  ~ ” ( w ) ,  the viscosity values ~ ’ ( 2 w )  
and f ( 2 w )  corresponding to the double frequency 2w also appear, because the 
second-order deformation includes contributions that oscillate with 2w. Moreover, the 

T, = T(1.1) +T(Z), p, = jj(1,1) + j j ( z ) .  

integral 
- 

occurs, which is known to agree with the zero-shear-rate viscosity of the fluid (cf. 
Bohme 1981). So we find the stress components 

+ [ ~ “ ( w )  - ~”(2w)l  sin (33) 

I n  the equation of motion (11) the sum of the stress derivatives 

+ [ ~ “ ( w )  - f(2w)l sin .2f””’) (35) 

occurs. Because of the special form of the function f (y) (cf. (25)) the factor f ’’, - 2f ’f”’ 
is constant and equal to 36/a2. Thus the terms multiplied by cos(4nx/l) and 
sin(4nxll) are independent of y, and therefore can be counterbalanced by an  
appropriate pressure field jj(l,l). The remaining term - + C [ T ~  - ~ ‘ ( w ) ]  (ff’)”’ can be 
considered to represent a non-conservative body force in the x-direction. It induces 
a motion of second order (the terms u2,w2 in (21)), which produces additional 
second-order stresses (the terms T@) and @(,) in (31)). The aim of $7 is to  determine 
this second-order flow field and to describe how to get the corresponding stresses. 
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7. The second-order flow field 

velocity field. From (12) i t  follows that 
First of all we turn to the boundary conditions, which constrain the second-order 

(36) 
Making use of the expression (21), as well as of (6) and (24), a systematic series 
expansion of the conditions (13) with respect to e leads to 

u2(x, 0) = 0, ?I2(%, 0) = 0. 

u2(x,a) = - 3  l+cos- , ( 4nx) 1 
vz(z, a )  = 0. (37) 

To determine the fields u2(x,y) and v2(x,y) a theory linear in uZ,u2 using the 
constitutive equation (23) suffices. Since the driving body force depends on y only, 
and because of the special form of the boundary conditions, we suppose that the 
x-component of the velocity field under discussion has the form 

47Tx 
u2 = w(y) +f’(y) cos 7. 

It follows from continuity that the y-component then reads 

4n 4nx 
vz = i f ( y )  sin 1. (39) 

Equations (36) and (37) lead to the following boundary conditions for the two 
unknown functions w(y) and j ( y )  : 

w(0) = 0, w(a)  = -3, (40) 

(41) f(0) = f’(0) = f(u) = 0, f’(.) = -3.  

According to (38) and (39) the second-order flow field consists of a steady shear flow 
and a harmonically oscillating motion. The latter is calculated within the linear 
viscoelastic theory analogously to the first-order flow field (notice the affinity with 
(24)) ; we have only to substitute $1 for I, that is w by 2w as well as f (y )  by f(y) .  In  
particular, we can use the result (30) for the pressure field again: 

Since the pressure depends on x only, 
of this differential equation, which obeys the boundary conditions (41), reads 

has to be constant, i.e. pv = 0. The solution 

Concerning the velocity contribution w(y), i t  is clear that  a steady plane shear flow 
of a linear viscoelastic fluid with the velocity field cwfy) [m/s] is connected with the 
shear stress cvodw/dy [N/m21. The force balance on a fluid element connects its 
spatial derivative with the driving body force : 
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With the boundary conditions (40) and subject to special properties of the function 
f(y), (44) yields 

This determines the second-order velocity field completely. It is influenced by a single 
material constant, namely f ( w ) / v 0 ,  and this concerns only the viscometric part w(y). 
The harmonically oscillating parts of first and second order are completely independent 
of the material properties. Note therefore that in the case of a viscoelastic fluid even 
in an E~ approximation the velocity component 2) is the same as in the case of a 
Newtonian fluid. As regards the extra stresses and the pressure, this is naturally not 
true. On the contrary, as (33) and (34) already suggest, the material constants yo, 
~ ’ ( m ) ,  ~ “ ( w ) ,  y’(2w) and 7;1’’(2~) enter the result. Since the complete second-order stress 
field will not be needed, the explicit formulas for the contributions T& and 722 - T ~ J  

can be omitted here. 

8. Rate of flow and efficiency 
In  order to come back to the aspects described in Q 1 we calculate the flow rate by 

integration of the velocity field. Expanding consistently in powers of e we obtain 
within an s2 approximation 

The subscript 0 used with the symbol q recalls that  this is the flow rate without 
counterpressure (for K = 0). From (46) it  is evident that all harmonically oscillating 
parts of the motion do not influence the flow rate. The relation (8) provides the 
time-averaged discharge Qo in the laboratory frame, which is more relevant for 
applications. Concerning the corresponding dimensionless flow-rate parameter (cf. the 
definition (1)) we find the remarkably simple result 

With this the coefficient function $,(oh), which was unknown in (19), is now 
determined. Apart from the numerical factor Q it  agrees with the ratio of the dynamic 
viscosity ~ ’ ( w )  and the zero-shear-rate viscosity v0. In  fluid-polymer systems (solutions 
and melts) f ( w ) / q o  decreases with frequency. The model of a Maxwell body with 
relaxation time A which obeys the relation 

fits real material data, at least qualitatively. According to (47) and (48) the flow-rate 
parameter m0 (without counterpressure) and the maximum sustainable value of the 
pressure parameter KO (remember the relation KO = 12Q0 between a0 and KO) 
decrease monotonically with the memory parameter wh;  cf. figure 2.  For the physical 
quantities Qo and Apl,o the following consequences arise. While for a Newtonian fluid 
go and Apl,o are proportional to the wave velocity c ,  in the case of a viscoelastic fluid 
both quantities increase only until the memory parameter wh reaches a certain value. 
For a Maxwell fluid this critical value is 1. In  this situation the memory already 
extends over several wave periods. If we increased the wave velocity further, Q and 
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FIGURE 2. Maximum rate of discharge and maximum counterpressure in 
dependence of the memory parameter ; Maxwell model. 

1 

2nX 
- C 

FIGURE 3. Connection between Go, Apl,o and c (sketch only): ---, 
Newtonian fluid; -, viscoelastic fluid. 

would decrease again (cf. figure 3). With regard to the greatest possible flow 
rate, c = 1/2nh would be the optimum wave velocity for a Maxwell fluid. The 
elasticity of the fluid and therefore its memory of former states of deformation cause 
considerable deviations as compared with the inelastic case. 

I n  $4 we showed that the pressure-discharge characteristics for peristaltic pumping 
are described by the linear relation Q, = m0 - &K if the amplitude of the corrugation 
is sufficiently small. By use of (47) we now get the explicit result 

Figure 4 illustrates this formula again for a Maxwell fluid. 
To estimate the virtues of peristalsis we calculate the energetic efficiency +j as the 

ratio of the useful power and the applied power. Because of the periodicity of the 
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FICWRE 4. Normalized pressure-flow-rate characteristics ; Maxwell model. 

flow i t  suffices to consider an element of the flow channel of one wavelength. If we 
normalize the useful power, that  is the product of the flow rate Q and the pressure 
rise Apl,  according to ( 1 )  and (2), we get (DK, which represents a quantity of order 
e4, because both factors are of order e2. The applied power as sum of the useful power 
and of the dissipation power contains contributions of order e2, which originate from 
the first-order motion. The efficiency is therefore of order c2, and can be calculated, 
within the frame of the approximation, as the ratio of the useful power QApt and 
the dissipation power connected with the first-order flow field: 

(D denotes the rate-of-deformation tensor, the symmetric part of the velocity 
gradient.) Using the explicit results from $5  the denominator in (50) can be reduced 
to the expression 6e2c2y ’ (w) l /a .  So we find for the efficiency i j  = @ K / [ 6 e 2 y ’ ( w ) / y o ] .  
Eliminating CD by the relation (49), the final formula 

results. It shows that in the case of an arbitrary viscoelastic fluid the efficiency is 
a quadratic function of the pressure parameter. It is clear that  i j  vanishes if one of 
the two factors in the numerator of (50) disappears, i.e. for K = 0 and for K = KO 
(if (D = 0). The greatest possible efficiency is attained for K = ;KO (that means a t  the 
same time (D = ;(Do) and has the value ij,,, = :e2y’(w)/y0 = :(Do. For real viscoelastic 
fluids, whose dynamic viscosity decreases monotonically with the frequency (cf. figure 
21, the maximum attainable efficiency decreases as the frequency parameter wh 
increases. With these considerations, figure 5, which illustrates the analytical result 
(51), is easy to understand. Thus, from an energetic point of view those wave velocities 
c are the best that are small compared with 1/2nh, a value that had special significance 
in figure 3. The viscoelastic fluid then changes its state so slowly that the memory, 
and with i t  the elasticity, have no influence at all (oh < 1) .  The Newtonian limit 
(wh = 0) therefore represents an up;er bound for the efficiency. On the other hand, 
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FIGURE 5. Efficiency as function of the pressure parameter and 
the memory parameter; Maxwell model. 
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for a fluid whose dynamic viscosity increases with the frequency, the Newtonian limit 
would be a lower bound, i.e. the efficiency could be improved by increasing the wave 
velocity. 

9. Conclusions 
The plane peristaltic flow of an incompressible viscoelastic fluid is described by five 

independent dimensionless quantities : the Reynolds number R, the dimensionless 
wavenumber al l ,  the amplitude ratio E ,  the memory parameter wh and the pressure 
parameter K .  On the assumption that the reduced Reynolds number is small enough 
(Rail -+ 0) ,  inertia forces are neglected. The assumption all  4 1 has the consequence 
that the pressure is constant over the channel height. Restricting to sufficiently small 
values of e the flow field can be approximated by the first terms of a series in ascending 
powers of E .  Within the frame of a second-order approximation the integral 
constitutive equation of finite linear viscoelasticity still applies. The theoretical 
analysis gives explicit expressions for the velocity fields, the pressure and the extra 
stresses. Particular interest is directed to the rate of flow produced by the peristaltic 
motion, and at the pumping efficiency, for which simple analytical results are deduced 
and discussed ((49) and (51)). The results are influenced by specific values of the 
complex viscosity of the fluid, which depend on the magnitude of the memory 
parameter wh.  

In  regard to the applications in biomechanics and physiology the two assumptions 
Ra/ l+  0 and all  4 1 ,  which cause remarkable simplifications, may be considered to  
be realistic. But i t  seems desirable to  weaken the third assumption [el 4 1 in order 
to describe peristaltic waves of arbitrary amplitude (lei < 1) .  General statements for 
simple fluids are then possible only under restrictive conditions, in particular for 
sufficiently slow flow, when the memory of the fluid particles reaches back only a short 
part of a wave period, wh << 1 .  Otherwise a specific fluid model has to be chosen in 
order to study the peristaltic transport in the case of arbitrary wave amplitude. This 
will be discussed by the second author elsewhere. 
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